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ABSTRACT

Diffusion Probabilistic Field (DPF) (Zhuang et al., 2023) models the distribution
of continuous functions defined over metric spaces. While DPF shows great
potential for unifying data generation of various modalities including images,
videos, and 3D geometry, it does not scale to a higher data resolution. This can be
attributed to the “scaling property”, where it is difficult for the model to capture
local structures through uniform sampling. To this end, we propose a new model
comprising of a view-wise sampling algorithm to focus on local structure learning,
and incorporating additional guidance, e.g., text description, to complement the
global geometry. The model can be scaled to generate high-resolution data while
unifying multiple modalities. Experimental results on data generation in various
modalities demonstrate the effectiveness of our model, as well as its potential as a
foundation framework for scalable modality-unified visual content generation.

1 INTRODUCTION

Generative tasks (Rombach et al., 2022; Ramesh et al., 2022) are overwhelmed by diffusion proba-
bilistic models that hold state-of-the-art results on most modalities like audio, images, videos, and 3D
geometry. Take image generation as an example, a typical diffusion model (Ho et al., 2020) consists
of a forward process for sequentially corrupting an image into standard noise, a backward process for
sequentially denoising a noisy image into a clear image, and a score network that learns to denoise
the noisy image.

The forward and backward processes are agnostic to different data modalities; however, the archi-
tectures of the existing score networks are not. The existing score networks are highly customized
towards a single type of modality, which is challenging to adapt to a different modality. For example,
a recently proposed multi-frame video generation network (Ho et al., 2022b;a) adapting single-frame
image generation networks involves significant designs and efforts in modifying the score networks.
Therefore, it is important to develop a unified model that works across various modalities without
modality-specific customization, in order to extend the success of diffusion models across a wide
range of scientific and engineering disciplines, like medical imaging (e.g., MRI, CT scans) and remote
sensing (e.g., LiDAR).

Field model (Sitzmann et al., 2020; Tancik et al., 2020; Dupont et al., 2022b; Zhuang et al., 2023)
is a promising unified score network architecture for different modalities. It learns the distribution
over the functional view of data. Specifically, the field f maps the observation from the metric space
M (e.g., coordinate or camera pose) into the signal space Y (e.g., RGB pixel) as f : M 7→ Y . For
instance, an image is represented as f : R2 7→ R3 that maps the spatial coordinates (i.e., height and
width) into RGB values at the corresponding location (See Fig. 1 (a)), while a video is represented
as f : R3 7→ R3 that maps the spatial and temporal coordinates (i.e., frame, height, and width)
into RGB values (See Fig. 1 (b)). Recently, diffusion models are leveraged to characterize the field
distributions over the functional view of data (Zhuang et al., 2023) for field generation. Given a set
of coordinate-signal pairs {(mi,yi)}, the field f is regarded as the score network for the backward
process, which turns a noisy signal into a clear signal yi in a sequential process with mi being fixed
all the time, as shown in Fig. 1 (d). The visual content is then composed of the clear signal generated
on a grid in the metric space.
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Figure 1: Illustration of the field models’ capability of modeling visual content. The underlying
data distribution is simplified into the 1-D space for demonstration. The score network learns the
distribution through the attention among coordinate-signal pairs, which is modality-agnostic.

Nevertheless, diffusion-based field models for generation still lag behind the modality-specific
approaches (Dhariwal & Nichol, 2021; Ho et al., 2022b; He et al., 2022) for learning from dynamic
data in high resolution (Bain et al., 2021; Yu et al., 2023a). For example, a 240p video lasting 5
seconds is comprised of up to 10 million coordinate-signal pairs. Due to the memory bottleneck in
existing GPU-accelerated computing systems, recent field models (Zhuang et al., 2023) are limited to
observe merely a small portion of these pairs (e.g., 1%) that are uniformly sampled during training.
This limitation significantly hampers the field models in approximating distributions from such sparse
observations (Quinonero-Candela & Rasmussen, 2005). Consequently, diffusion-based field models
often struggle to capture the fine-grained local structure of the data, leading to, e.g., unsatisfactory
blurry results.

While it is possible to change the pair sampling algorithm to sample densely from local areas instead
of uniformly, the global geometry is weakened. To alleviate this issue, it is desirable to introduce
some complementary guidance on the global geometry in addition to local sampling.

Multiple attempts (Gordon et al., 2020; Dutordoir et al., 2022; Zhuang et al., 2023) have been
presented to introduce additional global priors during modeling. Recent diffusion models (Rombach
et al., 2022; Ramesh et al., 2022) demonstrate that text descriptions can act as strong inductive biases
for learning data distributions, by introducing global geometry priors of the data, thereby helping one
to scale the models on complex datasets. However, fully exploiting correlation between the text and
the partially represented field remains uncharted in the literature.

In this paper, we aim to address the aforementioned issues, and scale the field models for generating
high-resolution, dynamic data. We propose a new diffusion-based field model, called T1. In contrast
to previous methods, T1 preserves both the local structure and the global geometry of the fields
during learning by employing a new view-wise sampling algorithm in the coordinate space, and
incorporates additional inductive biases from the text descriptions. By combining these advancements
with our simplified network architecture, we demonstrate that T1’s modeling capability surpasses
previous methods, achieving improved generated results under the same memory constraints. We
empirically validate its superiority against previous domain-agnostic methods across three different
tasks, including image generation, text-to-video generation, and 3D viewpoint generation. Various
experiments show that T1 achieves compelling performance even when compared to the state-of-
the-art domain-specific methods, underlining its potential as a scalable and unified visual content
generation model across various modalities. Notably, T1 is capable of generating high-resolution
video under affordable computing resources, while the existing field models can not.

Our contributions are summarized as follows:

• We reveal the scaling property of diffusion-based field models, which prevents them from scaling
to high-resolution, dynamic data despite their capability of unifying various visual modalities.

• We propose T1, a new diffusion-based field model with a sampling algorithm that maintains the
view-wise consistency, and enables the incorporation of additional inductive biases.
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2 BACKGROUND

Conceptually, the diffusion-based field models sample from field distributions by reversing a gradual
noising process. As shown in Fig. 1, in contrast to the data formulation of the conventional diffusion
models (Ho et al., 2020) applied to the complete data like a whole image, diffusion-based field models
apply the noising process to the sparse observation of the field, which is a kind of parametrized
functional representation of data consisting of coordinate-signal pairs, i.e., f : M 7→ Y . Specifically,
the sampling process begins with a coordinate-signal pair (mi,y(i,T )), where the coordinate comes
from a field and the signal is a standard noise, and less-noisy signals y(i,T−1),y(i,T−2), . . . , are
progressively generated until reaching the final clear signal y(i,0), with mi being constant.

Diffusion Probabilistic Field (DPF) Zhuang et al. (2023) is one of the recent representative diffusion-
based field models. It parameterizes the denoising process with a transformer-based network ϵθ(·),
which takes noisy coordinate-signal pairs as input and predicts the noise component ϵ of y(i,t). The
less-noisy signal y(i,t−1) is then sampled from the noise component ϵ using a denoising process Ho
et al. (2020). For training, they use a simplified loss proposed by Ho et al. (Ho et al., 2020) instead
of the variational lower bound for modeling the distributions in VAE (Kingma & Welling, 2014).
Specifically, it is a simple mean-squared error between the true noise and the predicted noise, i.e.,
∥ϵθ(mi,y(i,t), t)− ϵ∥. This approach is found better in practice and is equivalent to the denoising
score matching model (Song & Ermon, 2020), which belongs to another family of denoising models
and is referred to as the denoising diffusion model.

In practice, when handling low-resolution data consisting of N coordinate-signal pairs with DPF, the
scoring network ϵθ(·) takes all pairs {(mi,y(i,T ))} as input at once. For high-resolution data with a
large number of coordinate-signal pairs that greatly exceed the modern GPU capacity, Zhuang et al.
(2023) uniformly sample a subset of pairs from the data as input. They subsequently condition the
diffusion model on the other non-overlapping subset, referred to as context pairs. Specifically, the
sampled pairs interact with the query pairs through cross-attention blocks. Zhuang et al. (2023) show
that the ratio between the context pairs and the sampling pairs is strongly related to the quality of the
generated fields, and the quality decreases as the context pair ratio decreases. Due to the practical
memory bottleneck, DPF can only support a maximum 64 × 64 resolution, but our method can
handle a larger resolution 256× 256× 128 with the same hardware. In particular, our proposed field
model operates on the pairs constructed in the latent space of the autoencoder, instead of the pairs
constructed on the raw pixel space. As a result, while our method and DPF take the same number of
pairs as input, our method naturally allows dealing with views in higher resolution.

3 METHOD

In order to scale diffusion-based field models for high-resolution, dynamic data generation, we build
upon the recent DPF model (Zhuang et al., 2023) and address its limitations in preserving the local
structure of fields, as it can hardly be captured when the uniformly sampled coordinate-signal pairs
are too sparse. Specially, our method not only can preserve the local structure, but also enables
introducing additional inductive biases (i.e., text descriptions) for capturing the global geometry.

3.1 VIEW-WISE SAMPLING ALGORITHM

In order to preserve the local structure of fields, we propose a new view-wise sampling algorithm that
samples local coordinate-signal pairs for better representing the local structure of fields. For instance,
the algorithm samples the coordinate-signal pairs belonging to a single or several (n ⩾ 1; n denotes
the number of views) views for video data, where a view corresponds to a single frame. It samples
pairs belonging to a single or several rendered images for 3D viewpoints, where a view corresponds
to an image rendered at a specific camera pose. A view of an image is the image itself.

This approach restricts the number of interactions among pairs to be modeled and reduces the learning
difficulty on high-resolution, dynamic data. Nevertheless, even a single high-resolution view , e.g., in
merely 128×128 resolution) can still consist of 10K pairs, which in practice will very easily reach
the memory bottleneck if we leverage a large portion of them at one time, and hence hinder scaling
the model for generating high-resolution dynamic data.
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Figure 2: Sampling strategies on high-dimensional data. (a) Ideally, all pairs within a field (green
points) should be used for training, but is impractical given the memory limitations. (b) Previous
methods uniformly sample a sparse set of pairs (orange points) to represent the field. (c) Compared to
uniform sampling, our local sampling extracts high-resolution pairs (blue points), better covering the
local structure. The text guidance (red line) as an approximation complements the global geometry.

To address this issue, our method begins by increasing the signal resolution of coordinate-signal pairs
and reducing memory usage in the score network. Specifically, we replace the signal space with a
compressed latent space, and employ a more efficient network architecture that only contains decoders.
This improvement in efficiency allows the modeling of interactions among pairs representing higher-
resolution data while keeping the memory usage constrained. Based on this, one can then model the
interactions of pairs within a single or several views of high-resolution data. The overall diagram of
the proposed sampling algorithm can be found in Fig. 2.

Signal Resolution. We construct the coordinate-signal pairs in a compressed latent space, i.e., each
signal is represented by a transformer token, where the signal resolution for each token is increased
from 1 × 1 × 3 to 16 × 16 × 3 compared to the baseline, while maintaining the memory cost of
each pair. In particular, for each view of the data in a H × W × 3 resolution, we first extract its
latent representation using a pre-trained autoencoder (Rombach et al., 2022), with the latent map size
being H/8×W/8× 4. This approach improves the field representation efficiency by perceptually
compressing the resolution. We then employ a convolutional layer with 2× 2 kernel size in the score
network for further compressing the latent, resulting in a compressed feature map in H/16×H/16×4
resolution. This step further improves the computation efficiency of the scoring network by four
times, which is particularly useful for transformers that have quadratic complexity.

In this way, each coordinate-signal pair contains a coordinate, and its corresponding 1× 1 feature
point (corresponds to a 16× 16 signal) from the compressed feature map (with positional embedding
added). For each token, we use their corresponding feature map location for the position embedding.
By combining these, in comparison to DPF which supports a maximum 64× 64 view resolution, our
method can handle views with a maximum resolution of 1024× 1024 while maintaining very close
memory consumption during learning without compromising the quality of the generated signal.

Score Network. We further find that once a token encapsulates enough information to partially
represent the fidelity of the field, the context pairs (Zhuang et al., 2023) are no longer necessary
for model efficiency. Therefore, using high-resolution tokens enables us to get rid of the encoder-
decoder architecture (Jaegle et al., 2022) and thus to utilize a more parameters-efficient decoder-only
architecture. We adopt DiT (Peebles & Xie, 2022a) as the score network, which is the first decoder-
only pure-transformer model that takes noisy tokens and positional embedding as input and generates
the less-noisy token.

View-wise Sampling Algorithm. Based on the high-resolution signal and decoder-only network
architecture, our method represents field distributions by using view-consistent coordinate-signal
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pairs, i.e., collections of pairs that belong to a single or several (n ⩾ 1) views of the data, such as one
or several frames in a video, and one or several viewpoints of a 3D geometry. In particular, take the
spatial and temporal coordinates of a video in H ×W resolution lasting for T frames as an example,
for all coordinates {m1,m2, . . . ,mi, . . . ,mH×W×T }, we randomly sample a consecutive sequence
of length H ×W that correspond to a single frame, i.e., {m1,m2, . . . ,mi, . . . ,mH×W }. For data
consisting of a large amount of views (e.g. T >> 16), we randomly sample n views (sequences of
length H×W ), resulting in an H×W ×n sequence set. Accordingly, different from the transformers
in previous works (Zhuang et al., 2023) that model interaction among all pairs across all views, ours
only models the interaction among pairs that belongs to the same view, which reduces the complexity
of field model by limiting the number of interactions to be learned.

3.2 TEXT CONDITIONING

To complement our effort in preserving local structures that may weaken global geometry learning,
since the network only models the interaction of coordinate-signal pairs in the same view, we
propose to supplement the learning with a coarse global approximation of the field, avoiding issues in
cross-view consistency like worse spatial-temporal consistency between frames in video generation.

𝑛𝑛 views data𝑛𝑛 views noise

⨀

𝑛𝑛 views data1 view noise

repeat

Figure 3: Overview
of the previous noisy
data construction (top)
and ours (bottom).

In particular, we propose to condition diffusion models on text descriptions
related to the fields. Compared with the other possible modalities, text
can better represent data in compact but highly expressive features (Devlin
et al., 2019; Brown et al., 2020; Raffel et al., 2020), and serve as a low-rank
approximation of data (Radford et al., 2021). By conditioning diffusion
models on text descriptions, we show our method can capture the global
geometry of data from texts. It works like inductive biases of each pairs
and allow us to model cross-view interactions of pairs without explicit cross-
attention used in previous methods (Zhuang et al., 2023).

Cross-view Noise Consistency. We propose to model the interactions
among pairs across different views, which indeed represent the dependency
between views as the global geometry. In particular, we perform the forward
diffusion process that constructs cross-view noisy pairs by using the same
noise component across views, as illustrated in Fig. 3. The reparameter-
ization trick (Kingma & Welling, 2014) (for the forward process) is then
applied to a set of sampled pairs Q of a field, where the pairs make up multiple views, as shown
below:

Q =
{
{(mi,y(i,t))|i = 1, 2, . . . ,H·W}︸ ︷︷ ︸

pairs from the n-th view

∣∣ n = 1, 2, . . . , N
}

=
{
{(m(i,n),y(i,n,t) =

√
ᾱy(i,n,0) +

√
1− ᾱtϵi)|i=1, 2, . . . ,H·W}

∣∣ n=1, 2, . . . , N
}
.

(1)

In contrast to the previous works that use different noise components for all views of a field, ours
results in a modified learning objective, i.e., to coherently predict the same noise component from
different distorted noisy views. In this way, the whole field is regarded as a whole where each view
is correlated with the others. This enforces the model to learn to generate coherent views of a field.
During sampling, we use the deterministic DDIM sampler and only ensure the diffusion process
started by the same noise component across views.

Cross-view Condition Consistency. In order to model the dependency variation between views
belonging to the same field, i.e., the global geometry of the field, we condition the diffusion model on
the text embeddings of the field description or equivalent embeddings (i.e., the language embedding
of a single view in the CLIP latent space (Radford et al., 2021)). Our approach leverages the
adaptive layer normalization layers in GANs (Brock et al., 2019; Karras et al., 2019), and adapts
them by modeling the statistics from the text embeddings of shape Z × D. For pairs that make
up a single view, we condition on their represented tokens Z × D, (Z tokens of size D), by
modulating them with the scale and shift parameters regressed from the text embeddings. For pairs
(T × Z) × D that make up multiple views, we condition on the view-level pairs by modulating
feature in Z × D for each of the T views with the same scale and shift parameters. Specifically,
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Model
CIFAR10 64×64 CelebV-Text 256×256×128 ShapeNet-Cars 128×128×251
FID (↓) IS (↑) FVD (↓) FID (↓) CLIPSIM (↑) FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

Functa Dupont et al. (2022a) 31.56 8.12 ✗ ✗ ✗ 80.30 0.183 N/A N/A
GEM Du et al. (2021) 23.83 8.36 ✗ ✗ ✗ ✗ ✗ ✗ ✗

DPF Zhuang et al. (2023) 15.10 8.43 ✗ ✗ ✗ 43.83 0.158 18.6 0.81

TFGAN Balaji et al. (2019) ✗ ✗ 571.34 784.93 0.154 ✗ ✗ ✗ ✗
MMVID Han et al. (2022b) ✗ ✗ 109.25 82.55 0.174 ✗ ✗ ✗ ✗

MMVID-interp Han et al. (2022b) ✗ ✗ 80.81 70.88 0.176 ✗ ✗ ✗ ✗
VDM Ho et al. (2022b) ✗ ✗ 81.44 90.28 0.162 ✗ ✗ ✗ ✗

CogVideo Hong et al. (2023) ✗ ✗ 99.28 54.05 0.186 ✗ ✗ ✗ ✗

EG3D-PTI Chan et al. (2022) ✗ ✗ ✗ ✗ ✗ 20.82 0.146 19.0 0.85
ViewFormer Kulhánek et al. (2022) ✗ ✗ ✗ ✗ ✗ 27.23 0.150 19.0 0.83

pixelNeRF Yu et al. (2021) ✗ ✗ ✗ ✗ ✗ 65.83 0.146 23.2 0.90

sDFT (Ours) 7.29 9.31 42.03 24.33 0.220 24.36 0.118 23.9 0.90

Table 1: Sample quality comparison with state-of-the-art models for each task. “✗” denotes the
method cannot be adopted to the modality due to the method design or impractical computation cost.

(a) GEM Du et al. (2021) (b) DPF Zhuang et al. (2023) (c) T1 (ours)

Figure 4: Qualitative comparisons of domain-agnostic methods and ours on CIFAR-10. Our results
show better visual quality with more details than the others, while being domain-agnostic as well.

each transformer blocks of our score network learns to predict statistic features βc and γc from the
text embeddings per channel. These statistic features then modulate the transformer features Fc as:
adLNorm(Fc|βc, γc) = Norm(Fc) · βc + βc.

4 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our method on multiple modalities, including 2D image data on a
spatial metric space R2, 3D video data on a spatial-temporal metric space R3, and 3D viewpoint data
on a camera pose and intrinsic parameter metric space R6, while the score network implementation
remains identical across different modalities, except for the embedding size. The concrete network
implementation details including architecture and hyper-parameters can be found in the appendix.

Images. For image generation, we use the standard benchmark dataset, i.e., CIFAR10
64×64 Krizhevsky et al. (2009) as a sanity test, in order to compare with other domain-agnostic and
domain-specific methods. For the low-resolution CIFAR10 dataset, we compare our method with the
previous domain-agnostic methods including DPF Zhuang et al. (2023) and GEM Du et al. (2021).
We report Fréchet Inception Distance (FID) Heusel et al. (2017) and Inception Score (IS) Salimans
et al. (2016) or quantitative comparisons.

The experimental results can be found in Tab. 1. Specifically, T1 outperforms all domain-agnostic
models in the FID and IS metrics. The qualitative comparisons in Fig. 4 further demonstrate our
method’s superiority in images. Note that our method does not use text descriptions for ensuring
a fair comparison. It simply learns to predict all coordinate-signal pairs of a single image during
training without using additional text descriptions or embeddings.

Videos. To show our model’s capacity for more complex data, i.e., high-resolution, dynamic video,
we conduct experiments on the recent text-to-video benchmark: CelebV-Text 256×256×128 (Yu
et al., 2023b) (128 frames). As additional spatial and temporal coherence is enforced compared to
images, video generation is relatively underexplored by domain-agnostic methods. We compare
our method with the representative domain-specific methods including TFGAN (Balaji et al., 2019),
MMVID (Han et al., 2022a), CogVideo (Hong et al., 2023) and VDM (Ho et al., 2022b). We report
Fréchet Video Distance (FVD) (Unterthiner et al., 2018), FID, and CLIPSIM (Wu et al., 2021),
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(a) VDM Ho et al. (2022b) (b) CogVideo Hong et al. (2023) (c) sDFT (Ours)

Figure 5: Qualitative comparisons of domain-specific text-to-video models and ours. Compared with
VDM Ho et al. (2022b), our result is more continuous. Compared with CogVideo Hong et al. (2023),
our result have more realistic textures.

(a) pixelNeRF Yu et al. (2021) (b) Functa Dupont et al. (2022b) (c) sDFT (Ours)

(d) sDFT (Our high-resolution result)

Figure 6: Qualitative comparisons of domain-specific novel view synthesis models and ours. Our
results show competitive quality without explicitly using 3D modeling and allows generating high-
resolution results (e.g., 256×256×251 ) by only using low-resolution training data.

i.e., the cosine similarity between the CLIP embeddings (Radford et al., 2021) of the generated
images and the corresponding texts. Note, the recent text-to-video models (like NUAW (Wu et al.,
2022), Magicvideo (Zhou et al., 2022), Make-a-video (Singer et al., 2022), VLDM (Blattmann et al.,
2023), etc.) are not included in our comparisons. This is solely because all of them neither provide
implementation details, nor runnable code and pretrained checkpoints. Furthermore, their approaches
are similar to VDM (Ho et al., 2022b), which is specifically tailored for video data.

Our method achieves the best performance in both the video quality (FVD) and signal frame quality
(FID) in Tab. 1, compared with the recent domain-specific text-to-video models. Moreover, our model
learns more semantics as suggested by the CLIPSIM scores. The results show that our model, as a
domain-agnostic method, can achieve a performance on par with domain-specific methods in the
generation of high-resolution, dynamic data. The qualitative comparisons in Fig. 5 further support
our model in text-to-video generation compared with the recent state-of-the-art methods.

3D Viewpoints. We also evaluate our method on 3D viewpoint generation with the ShapeNet
dataset (Chang et al., 2015). Specifically, we use the “car” class of ShapeNet which involves 3514
different cars. Each car object has 50 random viewpoints, where each viewpoint is in 128 × 128
resolution. Unlike previous domain-agnostic methods (Du et al., 2021; Zhuang et al., 2023) that
model 3D geometry over voxel grids at 643 resolution, we model over rendered camera views
based on their corresponding camera poses and intrinsic parameters, similar to recent domain-
specific methods (Sitzmann et al., 2019; Yu et al., 2021). This approach allows us to extract more
view-wise coordinate-signal pairs while voxel grids only have 6 views. We report our results in
comparison with the state-of-the-art view-synthesis algorithms including pixelNeRF (Yu et al., 2021),
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Text View-wise
Noise Local Sampling Resolution Training

Views FVD (↓) FID (↓) CLIPSIM (↑) MACs Mems

✗ N/A ✓ 16.0 8 608.27 34.10 - 113.31G 15.34Gb
✓ ✗ ✓ 16.0 8 401.64 75.81 0.198 117.06G 15.34Gb
✓ N/A ✗ 1.0* 8 900.03 119.83 0.113 7.350T 60.31Gb
✓ ✓ ✓ 1.0* 8 115.20 40.34 0.187 7.314T 22.99Gb
✓ ✓ ✓ 16.0 1 320.02 21.27 0.194 117.06G 15.34Gb
✓ ✓ ✓ 16.0 4 89.83 23.69 0.194 117.06G 15.34Gb
✓ ✓ ✓ 16.0 8 42.03 24.33 0.220 117.06G 15.34Gb

Table 2: Ablation analysis on our proposed method under different settings. ‘*’ denotes that the
model is trained on low-resolution 32×32 videos due the setting is not efficient enough and reach the
memory constraints. All computation cost MACs and GPU memory usage Mems are estimated in
generating a single view regardless of the resolution for a fair comparison.

viewFormer (Kulhánek et al., 2022), and EG3D-PTI (Chan et al., 2022). Note that our model indeed
performs one-shot novel view synthesis by conditioning on the text embedding of a random view.

Our model’s performance is even comparable with domain-specific novel view synthesize methods, as
shown by the result in Tab. 1. Since our model does not explicitly utilize 3D geometry regularization
as NeRF does, the compelling results demonstrate the potential of our method across various complex
modalities like 3D geometry. The visualizations in Fig. 6 also show similar quality as previous works.

4.1 ABLATIONS AND DISCUSSIONS

In this section, we demonstrate the effectiveness of each of our proposed components and analyze
their contributions to the quality of the final result, as well as the computation cost. The quantitative
results under various settings are shown in Table 2. Since the text conditioning effect depends on our
sampling algorithm, we will first discuss the effects of text conditions and then local sampling.

Effect of text condition. To verify the effectiveness of the text condition for capturing the global
geometry of the data, we use two additional settings. (1) The performance of our model when the text
condition is removed is shown in the first row of Tab. 2. The worse FVD means that the text condition
play a crucial role in preserving the global geometry, specifically the spatial-temporal coherence in
videos. (2) When the text condition is added, but not the cross-view consistent noise, the results can
be found in the second row of Tab. 2. The FVD is slightly improved compared to the previous setting,
but the FID is weakened due to underfitting against cross-view inconsistent noises. In contrast to our
default setting, these results demonstrate the effectiveness of the view-consistent noise. Furthermore,
we note that more detailed text descriptions can significantly improve the generated video quality.

Effect of local sampling. We investigate the effects of local sampling under different settings for
preserving the local structure of data. (1) We first compare our local sampling with the baseline
uniform sampling strategy (Zhuang et al., 2023), as shown in the 3rd row and 4th row of Tab. 2.
Specifically, due to the memory constraints, we can only conduct experiments on frames in a lower
resolution of 32×32 during sampling pairs, which are marked with “*”. The FID evaluated on single
frames shows the local structure quality, and hence the effectiveness of local sampling. Furthermore,
our local sampling significantly reduces memory usages, from 60.31Gb into 22.99Gb, at a 0.036T
less cost of MACs. (2) To verify the effectiveness of the extended signal resolution, we can compare
the 4th row (resolution 1×1) and the last row (default setting; resolution 16×16). In contrast, our
default setting outperforms the low-resolution setting without significant computation and memory
consumption.

Effect of number of views. We investigate the model performance change with varying number of
views (n) for representing fields, as shown in the 5th and 6th rows of Tab. 2. Compared to the default
setting of n = 8, reducing n to 1 leads to non-continuous frames and abrupt identity changes, as
indicated by the low FVD. When n is increased to 4, the continuity between frames is improved, but
still worse than the default setting with n = 8 for the dynamics between frames. As the n = 8 setting
reaches the memory limit, we set it as the default. Thus, a larger number of views leads to a higher
performance, along with a higher computation cost.

8
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Effect of network architecture. Different from DPF (Zhuang et al., 2023) that depends on context-
query pairs, our model can also utilize the non-transformer architecture like the U-Net architecture
used in LDM Rombach et al. (2022). To demonstrate our flexibility, we include a supplemental 3D-
viewpoints generation experiment by replacing the transformer architecture with the U-Net network
and self-attention used in LDM, where the coordinates are embedded as an additional channel of the
latent. Compared with the used transformer architecture that achieves 24.36 FID, the new network
can archives comparable 26.92 FID performance, which still matches the domain-specific methods.

Limitations. (1) Our method can generate high-resolution data, but the scaling property is merely
resolved for the spatial dimensions exclusively. For instance, for an extremely long video with com-
plex dynamics (e.g., 1 hour; such long videos remain uncharted in the literature), learning short-term
variations is still difficult since our local sampling method is still uniform in the temporal perspective.
This paper focuses on generating spatially high-resolution data. (2) Our method only applies to visual
modalities interpretable by views. For modalities such as temperature manifold (Hersbach et al.,
2019) where there is no “views” of such field, our method does not apply. As long as the data in the
new domain (e.g., 3D dynamic scene and MRI) can be interpreted by views, our method can reuse the
same latent autoencoder (Rombach et al., 2022) without switching to domain-specific autoencoders.

5 RELATED WORK

In recent years, generative models have shown impressive performance in visual content generation.
The major families are generative adversarial networks (Goodfellow et al., 2020; Mao et al., 2017;
Karras et al., 2019; Brock et al., 2019), variational autoencoders (Kingma & Welling, 2014; Vahdat &
Kautz, 2020), auto-aggressive networks (Chen et al., 2020; Esser et al., 2021), and diffusion models Ho
et al. (2020); Song et al. (2021). Recent diffusion models have obtained significant advancement
with stronger network architectures (Dhariwal & Nichol, 2021), additional text conditions (Ramesh
et al., 2022), and pretrained latent space (He et al., 2022). Our method built upon these successes and
targets at scaling domain-agnostic models for matching these advancement.

Our method models field distributions using explicit coordinate-signal pairs, which is different from
the body of work that implicitly models field distributions, including Functa (Dupont et al., 2022b)
and GEM (Du et al., 2021). These methods employ a two-stage modeling paradigm, which first
parameterizes fields and then learns the distributions over the parameterized latent space. Compared
with the single-stage parameterization used in our method, the two-stage paradigm demands more
complex network architecture, as it employs a separate network to formulate a hypernetwork (Ha
et al., 2017). Moreover, the learning efficiency of the two-stage methods hinders scaling the models,
as their first stage incurs substantial computational costs to compress fields into latent codes. In
contrast, our method enjoy the benefits of the single-stage modeling and improves its accuracy in
preserving local structures and global geometry.

Our method also differs from the recently proposed domain-specific works for high-resolution,
dynamic data, which models specific modalities in a dedicated latent space, including Spatial
Functa (Bauer et al., 2023) and PVDM (Yu et al., 2023c). These methods typically compress the high-
dimensional data into a low-dimensional latent space. However, the compression is usually specific to
a center modality and lacks the flexibility in dealing with different modalities. For instances, PVDM
compresses videos into three latent codes that represent spatial and temporal dimensions separately.
However, such a compressor cannot be adopted into the other similar modalities like 3D scenes. In
contrast, our method owns the unification flexibility by learning on the coordinate-signal pairs and
the achieved advancement can be easily transferred into different modalities.

6 CONCLUSION

In this paper, we introduce a new generative model to scale the DPF model for high-resolution
data generation, while inheriting its modality-agnostic flexibility. Our method involves (1) a new
view-wise sampling algorithm based on high-resolution signals; (2) a conditioning mechanism that
leverages view-level noise and text descriptions as inductive bias. Experimental results demonstrate
its effectiveness in various modalities including image, video, and 3D viewpoint.
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7 ETHICAL STATEMENT

In this paper, we present a new generative model unifying varies visual content modalities including
images, videos, and 3D scenes. While we are excited about the potential applications of our model,
we are also acutely aware of the possible risks and challenges associated with its deployment. Our
model’s ability to generate realistic videos and 3D scenes could potentially be misused for creating
disingenuous data, a.k,a, “DeepFakes”. We encourage the research community and practitioners to
follow privacy-preserving practices when utilizing our model. We also encourage readers to refer
to the Rostamzadeh et al. (Rostamzadeh et al., 2021) for an in-depth review of ethics in generating
visual contents.

8 REPRODUCIBILITY STATEMENT

We provide the hyperparameters of each presented experiments in Appendix A. Readers can reproduce
our results according to our listed implementation details, including the dimension, number of
channels, and data resolution in Appendix A. Furthermore, we also provide the training and testing
data details in Appendix B for reference.
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Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and João Carreira. Perceiver IO:
A general architecture for structured inputs & outputs. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
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A ADDITIONAL SETTINGS

Model Details.

• In the interest of maintaining simplicity, we adhere to the methodology outlined by Dhariwal
et al. Dhariwal & Nichol (2021) and utilize a 256-dimensional frequency embedding to
encapsulate input denoising timesteps. This embedding is then refined through a two-layer
Multilayer Perceptron (MLP) with Swish (SiLU) activation functions.

• Our model aligns with the size configuration of DiT-XL Peebles & Xie (2022b), which
includes retaining the number of transformer blocks (i.e. 28), the hidden dimension size of
each transformer block (i.e., 1152), and the number of attention heads (i.e., 16).

• Our model derives text embeddings employing T5-XXL Raffel et al. (2020), culminating in
a fixed length token sequence (i.e., 256) which matches the length of the noisy tokens. To
further process each text embedding token, our model compresses them via a single layer
MLP, which has a hidden dimension size identical to that of the transformer block.

Diffusion Process Details. Our model uses classifier-free guidance in the backward process with
a fixed scale of 8.5. To keep consistency with DiT-XL Peebles & Xie (2022a), we only applied
guidance to the first three channels of each denoised token.

3D Geometry Rendering Settings. Following the settings of pixelNeRF Yu et al. (2021), we render
each car voxel into 128 random views for training models and testing. However, the original setting
puts camera far away from the objects and hence results in two many blank areas in the rendered
views. We empirically find that these blank areas hurts the diffusion model performance since the
noise becomes obvious in blank area and can be easily inferred by diffusion models, which degrades
the distribution modeling capability of diffusion models.

To overcome this, we first randomly fill the blank area with Gaussian noise N (0, 0.1) without
overlapping the 3D geometry. We then move the camera in the z-axis from 4.0 into 3.0, which is
closer to the object than the previous one. During testing, we use the same settings as pixelNeRF
and remove the noise according to the mask. For straightforward understand their difference, we
visualized their rendered results in Fig. 7.

(a) pixelNeRF Yu et al. (2021) rendering (b) ours rendering

Figure 7: Visual comparisons of different 3D geometry rendering settings.

B ADDITIONAL DATASET DETAILS

In the subsequent sections, we present the datasets utilized for conducting our experiments. We
empirically change the size settings of our model as shown in Tab 3.

• CelebV-Text Yu et al. (2023b) Due to the unavailability of some videos in the released
dataset, we utilize the first 60,000 downloadable videos for training our model. For videos
that contain more than 128 frames, we uniformly select 128 frames. Conversely, for videos
with fewer than 128 frames, we move to the next video, following the order of their names,
until we identify a video that meets the required length of 128 frames.

• ShapeNet Chang et al. (2015). The conventional methods in DPF Zhuang et al. (2023)
and GEM Du et al. (2021) generally involve training models on the ShapeNet dataset,
wherein each object is depicted as a voxel grid at a resolution of 643. However, our model
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Hyper-parameter CIFAR10 Krizhevsky et al. (2009) CelebV-Text Yu et al. (2023b) ShapeNet Chang et al. (2015)

train res. 64×64 256×256×128 128×128×128
256×256×128 (upsampled)

eval res. 64×64 256×256×128 128×128×251
256×256×251

# dim coordinates 2 3 6
# dim signal 3 3 3

# freq pos. embed 10 10 10
# freq pos. embed t 64 64 64

#blocks 28 28 28
#block latents 1152 1152 1152

#self attention heads 16 16 16

batch size 128 128 128
lr 1e− 4 1e− 4 1e− 4

epochs 400 400 1200

Table 3: Hyperparameters and settings on different datasets.

distinguishes itself by relying on view-level pairs, thereby adopting strategies utilized by
innovative view synthesis methods like pixelNeRF Yu et al. (2021) and GeNVS Chan et al.
(2023). To specify, we conduct training on the car classes of ShapeNet, which encompasses
2,458 cars, each demonstrated with 128 renderings randomly scattered across the surface of
a sphere.
Moreover, it’s worth noting that our model refrains from directly leveraging the text descrip-
tions of the car images. Instead, it conditions on the CLIP embedding Radford et al. (2021)
of car images for linguistic guidance. This approach circumvents the potential accumulation
of errors that might occur during the text-to-image transformation process.

C ADDITIONAL EXPERIMENTAL DETAILS

Video Generation Metrics Settings. In video generation, we use FVD Unterthiner et al. (2018)1 to
evaluate the video spatial-temporal coherency, FID Heusel et al. (2017)2 to evaluate the frame quality,
and CLIPSIM Radford et al. (2021)3 to evaluate relevance between the generated video and input
text. As all metrics are sensitive to data scale during testing, we randomly select 2,048 videos from
the test data and generate results as the “real” and “fake” part in our metric experiments. For FID,
we uniformly sample 4 frames from each video and use a total of 8,192 images. For CLIPSIM, we
calculate the average score across all frames. We use the “openai/clip-vit-large-patch14” model for
extracting features in CLIPSIM calculation.

D VISUALIZATION

Text-to-video Results. We visualize more text-to-image generation results in the following for
demonstrating the temporal consistency learned by our model.

Figure 8: Prompt: Environment care. The girl’s hands are holding a tree sapling.

Cross-view Consistency. In Fig. 11, we present the intermediate generation results of our model,
showcasing the denoised image at various timesteps (from t = T to t = 0). We observe an

1FVD is implemented in https://github.com/sihyun-yu/DIGAN
2FID is implemented in https://github.com/toshas/torch-fidelity
3CLIPSIM is implemented in https://github.com/Lightning-AI/torchmetrics
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Work in Progress

Figure 9: Prompt: Pile of old tvs and retro television with green screen. dolly out.

Figure 10: Prompt: Star abstract retro tunnel loop neon glowing animation video template seamless
loop.

enhancement in spatial and temporal consistency, such as the improved structure in the generated
chair and the retained facial identity in the generated man, as the sampling duration increases. These
results provide additional evidence that our model effectively learns cross-view consistency through
the diffusion process.
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timestep: T

timestep: T * 4 / 5 

timestep: T * 3 / 5 

timestep: T * 2 / 5 

timestep: T * 1 / 5 

timestep: 0 

timestep: T

timestep: T * 4 / 5 

timestep: T * 3 / 5 

timestep: T * 2 / 5 

timestep: T * 1 / 5 

timestep: 0 

Figure 11: Intermediate results visualization of our multi-view generation. Here we show the
predicted clean image at different timesteps for highlighting the cross-view consistency of our model.
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